Extensions 1→N→G→Q→1 with N=C2×C2.C42 and Q=C2

Direct product G=N×Q with N=C2×C2.C42 and Q=C2
dρLabelID
C22×C2.C42128C2^2xC2.C4^2128,998

Semidirect products G=N:Q with N=C2×C2.C42 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C2.C42)⋊1C2 = C24.17Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):1C2128,165
(C2×C2.C42)⋊2C2 = C232C42φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):2C2128,169
(C2×C2.C42)⋊3C2 = C24.5Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):3C2128,171
(C2×C2.C42)⋊4C2 = C24.52D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):4C2128,172
(C2×C2.C42)⋊5C2 = D44C42φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):5C2128,1007
(C2×C2.C42)⋊6C2 = C2×C23.7Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):6C2128,1010
(C2×C2.C42)⋊7C2 = C2×C23.34D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):7C2128,1011
(C2×C2.C42)⋊8C2 = C2×C24.C22φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):8C2128,1021
(C2×C2.C42)⋊9C2 = C24.547C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):9C2128,1050
(C2×C2.C42)⋊10C2 = C2×C23.Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):10C2128,1121
(C2×C2.C42)⋊11C2 = C23.543C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):11C2128,1375
(C2×C2.C42)⋊12C2 = C24.50D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):12C2128,170
(C2×C2.C42)⋊13C2 = C2×C22.SD16φ: C2/C1C2 ⊆ Out C2×C2.C4232(C2xC2.C4^2):13C2128,230
(C2×C2.C42)⋊14C2 = C24.150D4φ: C2/C1C2 ⊆ Out C2×C2.C4216(C2xC2.C4^2):14C2128,236
(C2×C2.C42)⋊15C2 = C2×C23.8Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):15C2128,1018
(C2×C2.C42)⋊16C2 = C2×C23.23D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):16C2128,1019
(C2×C2.C42)⋊17C2 = C24.198C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):17C2128,1057
(C2×C2.C42)⋊18C2 = C24.549C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):18C2128,1071
(C2×C2.C42)⋊19C2 = C23.231C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):19C2128,1081
(C2×C2.C42)⋊20C2 = C23.235C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):20C2128,1085
(C2×C2.C42)⋊21C2 = C23.241C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):21C2128,1091
(C2×C2.C42)⋊22C2 = C24.218C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):22C2128,1096
(C2×C2.C42)⋊23C2 = C2×C232D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):23C2128,1116
(C2×C2.C42)⋊24C2 = C2×C23⋊Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):24C2128,1117
(C2×C2.C42)⋊25C2 = C2×C23.10D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):25C2128,1118
(C2×C2.C42)⋊26C2 = C2×C23.11D4φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):26C2128,1122
(C2×C2.C42)⋊27C2 = C2×C23.4Q8φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):27C2128,1125
(C2×C2.C42)⋊28C2 = C24.563C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):28C2128,1151
(C2×C2.C42)⋊29C2 = C24.258C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):29C2128,1157
(C2×C2.C42)⋊30C2 = C24.262C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):30C2128,1162
(C2×C2.C42)⋊31C2 = C23.344C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):31C2128,1176
(C2×C2.C42)⋊32C2 = C23.350C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):32C2128,1182
(C2×C2.C42)⋊33C2 = C23.388C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):33C2128,1220
(C2×C2.C42)⋊34C2 = C23.398C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):34C2128,1230
(C2×C2.C42)⋊35C2 = C23.410C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):35C2128,1242
(C2×C2.C42)⋊36C2 = C23.443C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):36C2128,1275
(C2×C2.C42)⋊37C2 = C24.583C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):37C2128,1296
(C2×C2.C42)⋊38C2 = C24.592C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):38C2128,1371
(C2×C2.C42)⋊39C2 = C23.556C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2):39C2128,1388
(C2×C2.C42)⋊40C2 = C2×C4×C22⋊C4φ: trivial image64(C2xC2.C4^2):40C2128,1000

Non-split extensions G=N.Q with N=C2×C2.C42 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C2.C42).1C2 = C23.19C42φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).1C2128,12
(C2×C2.C42).2C2 = C24.624C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).2C2128,166
(C2×C2.C42).3C2 = C24.625C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).3C2128,167
(C2×C2.C42).4C2 = C24.626C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).4C2128,168
(C2×C2.C42).5C2 = C24.632C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).5C2128,174
(C2×C2.C42).6C2 = C24.633C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).6C2128,175
(C2×C2.C42).7C2 = C2×C428C4φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).7C2128,1013
(C2×C2.C42).8C2 = C2×C425C4φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).8C2128,1014
(C2×C2.C42).9C2 = C2×C23.63C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).9C2128,1020
(C2×C2.C42).10C2 = C2×C23.84C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).10C2128,1132
(C2×C2.C42).11C2 = C23.30D8φ: C2/C1C2 ⊆ Out C2×C2.C4232(C2xC2.C4^2).11C2128,26
(C2×C2.C42).12C2 = C24.631C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).12C2128,173
(C2×C2.C42).13C2 = C24.634C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).13C2128,176
(C2×C2.C42).14C2 = C24.635C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).14C2128,177
(C2×C2.C42).15C2 = C24.636C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).15C2128,178
(C2×C2.C42).16C2 = C2×C23.31D4φ: C2/C1C2 ⊆ Out C2×C2.C4232(C2xC2.C4^2).16C2128,231
(C2×C2.C42).17C2 = C2×C23.65C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).17C2128,1023
(C2×C2.C42).18C2 = C2×C23.67C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).18C2128,1026
(C2×C2.C42).19C2 = C23.211C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).19C2128,1061
(C2×C2.C42).20C2 = C23.225C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).20C2128,1075
(C2×C2.C42).21C2 = C23.250C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).21C2128,1100
(C2×C2.C42).22C2 = C2×C23.78C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).22C2128,1119
(C2×C2.C42).23C2 = C2×C23.81C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).23C2128,1123
(C2×C2.C42).24C2 = C2×C23.83C23φ: C2/C1C2 ⊆ Out C2×C2.C42128(C2xC2.C4^2).24C2128,1126
(C2×C2.C42).25C2 = C24.567C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).25C2128,1170
(C2×C2.C42).26C2 = C24.577C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).26C2128,1225
(C2×C2.C42).27C2 = C23.405C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).27C2128,1237
(C2×C2.C42).28C2 = C23.449C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).28C2128,1281
(C2×C2.C42).29C2 = C24.584C23φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).29C2128,1301
(C2×C2.C42).30C2 = C23.546C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).30C2128,1378
(C2×C2.C42).31C2 = C23.559C24φ: C2/C1C2 ⊆ Out C2×C2.C4264(C2xC2.C4^2).31C2128,1391
(C2×C2.C42).32C2 = C4×C2.C42φ: trivial image128(C2xC2.C4^2).32C2128,164
(C2×C2.C42).33C2 = C2×C424C4φ: trivial image128(C2xC2.C4^2).33C2128,999
(C2×C2.C42).34C2 = C2×C4×C4⋊C4φ: trivial image128(C2xC2.C4^2).34C2128,1001

׿
×
𝔽